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Liquid-Liquid Equilibrium of Polydisperse 
Copolymer Solutions. Multivariate Distribution 
Functions in Continuous Thermodynamics 

MARGIT T. RATZSCH, HORST KEHLEN, and 
DIETER BROWARZIK 

Department of Chemistry 
"Carl Schorlemmer" Technical University 
DDR-4200 Merseburg, German Democratic Republic 

A B S T R A C T  

In addition to the usual polydispersity with respect to molar mass,  
copolymers show chemical polydispersity. Thus, the species pres- 
ent may not be adequately characterized by a single variable, and a 
divariate distribution function has to be applied for describing the 
composition of the copolymer. In continuous thermodynamics, 
such continuous distribution functions are used directly (without 
splitting into pseudocomponents ) for  describing the composition 
of complex multicomponent systems. Whereas until now usually 
only one distribution variable has  been used in continuous thermo- 
dynamics, consideration of copolymers requires an extension to di- 
variate distribution functions. Continuous thermodynamics is gen- 
eralized to divariate distribution functions in this paper. The 
liquid-liquid equilibrium of copolymer solutions is considered as 
a specific example. 
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1680 RATZSCH, KEHLEN, AND BROWARZIK 

I N T R O D U C T I O N  

The theoretical treatment of phase equilibria is based on thermo- 
dynamics. Traditional thermodynamics describes the composition of 
a mixture by the mole fractions, o r  mass  fractions, etc., of individual 
components. For synthetic polymers the number of species is much 
too large for numerical solution of the resulting system of equations. 
Thus, the usual procedure consists of combining several neighboring 
species to form a pseudocomponent. The number of these pseudocom- 
ponents is chosen in such a way that the cost of the numerical calcula- 
tions may be tolerable. Clearly, this pseudocomponent method is an 
arbitrary and awkward procedure. 

In polymer chemistry, from the very beginning, continuous distribu- 
tion functions have been applied for characterization. A version of 
thermodynamics was established in 1980 (Kehlen and Ratzsch [ l ]  , 
Salacuse and Stell [2],  Gultieri et  al. [3], Briano and Glandt [4] ; for 
references to some earlier preliminary attempts, see Ref. 5) that 
uses such continuous distribution functions in the framework of ther- 
modynamics directly without pseudocomponents. We call this exten- 
sion "continuous thermodynamics. ?' It has been successfully applied 
to the calculation of the vapor-liquid equilibria of petroleum and simi- 
lar mixtures [6, 71 and of the liquid-liquid equilibria of polymer sys- 
tems [5, 8, 91. In those papers the distribution function was assumed 
to depend on only a single variable. 

For characterizing copolymer species (at least) two variables are 
necessary. Thus, in this paper the treatment is generalized to divari- 
ate distribution functions. The further generalization to multivariate 
distribution functions is simple. 

However, division into pseudocomponents proves to be unnecessary. 

D I V A R I A T E  D I S T R I B U T I O N  F U N C T I O N S  

Let us consider a copolymer consisting of two kinds of monomer 
units, a and P. We choose a standard segment and define the segment 
numbers ra and r as the quotients of the hard core volumes of all 

a-monomer units o r  all P-monomer units, respectively, in a molecule 
and of this standard segment. For simplicity, we assume that each 
species of a polydisperse copolymer may be characterized sufficiently 
by the two variables ra and r 
with respect to molar mass and to chemical composition, we choose for 
characterization, instead of ra and r 
the segment fraction Y of the a-monomer units within the molecules: 

P 

To separate the effects of polydispersity Ir 

the total segment number r and P' 
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POLYDISPERSE COPOLYMER SOLUTIONS 1681 

Thus, the composition of a polydisperse copolymer may be described 
by a divariate distribution function W (r,Y).  Generalizing the treat- 
ment in Refs. 5 and 9 to two variables, W (r,Y)drdY gives the segment 
fraction of all copolymer species with r-values between r and r + d r  
and Y-values between Y and Y + dY. Thus, weoobtain by integration 
over the total domains of definition ro 5 r 5 r and 0 5 Y 5 1: 

P H A S E  E Q U I L I B R I U M  B Y  CONTINUOUS 
T H E R M O D Y N A M I C S  

W e  consider a system containing a solvent A and a copolymer B. 
and * *  is: The condition for phase equilibrium between two phases 

Here p indicates the chemical potential. For the copolymer B, the 
phase equilibrium condition applies to all species present. In the 
traditional treatment, these are the individual pseudocomponents, 
but in continuous thermodynamics the copolymer is considered as a 
two-dimensional continuous ensemble. Two copolymer species may 
differ with respect to r and Y by as small amounts as we like. Of 
course, each such continuous copolymer species is present only in 
an infinitely small amount. Thus, the phase equilibrium condition 
for  the copolymer B holds for all r- and Y-values within the domains 
of definition mentioned above. 

To apply Eqs. (3) ,  we need expressions for the chemical potentials 
in the continuous treatment. In earlier papers [ 5, 8, 91 the thermo- 
dynamic quantities were considered dependent on the distribution func- 
tions for only one variable. The generalization to divariate distribu- 
tion functions is simple: 

In all relations, the single variable is to be replaced by two vari- 
ables ( r  and Y). 
Single integrals are to be replaced by double integrals of type (2). 

The relations for the chemical potentials read 
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1682 RATZSCH, KEHLEN, AND BROWARZIK 

+ rRT In ;B(r,Y) (4 )  

where R is the universal gas constant, T is the absolute temperature, 
I& is the total segment fraction of all polymer species, and rA is the 
segment number of the solvent molecules. The quantity TB designates 
the number-average of the segment numbers of all polymer species, 
defined by 

In Eqs. ( 4 )  the first terms on the right-hand side are standard 
terms independent of the composition of the mixture considered, i.e., 
independent of $and of W (r,Y). The second terms are the well-known 
Flory-Huggins terms, and the third terms describe the deviations 
from a Flory-Huggins mixture containing the so-called segment-molar 
activity coefficients rA and TB( r,Y). 

Expressing the chemical potentials in Eqs. ( 3 )  according to Eqs. 
(4), we obtain, after rearranging, 

( 1  - $ I ? )  = ( 1  - 9') exp rApA (6)  

$ ?  

v1 
WIT( r,Y) = -W' ( r ,Y)  exp r pB 

where 
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Further treatment depends on how the distributign functgm W (r,Y) 
influences the segment-molar activity coefficients yA and yB. The 
logarithms of 
with respect to the segment-molar excess Gibbs energy EE/RT (where 
"excess" means the deviation from a Flory-Huggins mixture). For 
homopolymers, one often may assume EE to be independent of the dis- 
tribution function [ 5, 91. Thus, for copobmers,  EE should depend on 
W (r ,Y) only through the weight-average Y of the chemical composition 
Y of the copolymers 

and TB are  the partial segment-molar quantities 

Y" = srsy YW(r,Y)dYdr 

as a reasonable assumption. Applying Huggins' X-parameter concept 
and assuming x to depend on Y as  a quadratic polynomial, we write 

N N  =E 
G / R T = * ( l - @ ) x ;  x = a +  bY+cY2 

Here the parameters a, b, and c of the polynomial depend only on the 
temperature (and eventually on the pressure). 

Relation (11) may also be justified by molecular considerations 
(see Appendix). From Eq. (11) we obtain by the methods outlined in 
Refs. 1, 7, and 9: 

In TA = @" (a + b? + c?) 

In TB = (1 - $)' (a + b?+ c?) + (1  - i l / )  (b  + %c?) (Y  - ?) 
=E Like G , the Logarithms of the activity coefficients depend on W ( r ,Y)  

only through Y. Furthermore, In TB does not depend on r but on Y. 

C L O U D - P O I N T  CURVE AND SHADOW CURVE 

To deal with this problem, the temperature of a given phase ( ) is 
changed at constant pressure P until a second phase (shadow phase, 'I) 

is formed. Thus, the unknowns of the problem are the equilibrium 
temperature T and the composition of phase 
bution function W"( r,Y). 

the normalization condition (atappl ied to W"( r,Y)-are used. In this 
system of equations, the unknown distribution function W"( r ,Y)  and 

i.e., and the distri- 

To calculate them, the phase equilibrium conditions (6)  and (7) and 
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1684 RATZSCH, KEHLEN, AND BROWARZIK 

the other unknowns T and $.J" (which we will call scalar quantities to 
point out the difference) a re  interweaved. According to Eqs. (9)  and 
( 12), on the right-hand side of Eq. (7)Jhe unkngwn distribution func- 
tion Wtf(r ,Y) occurs only by means of rBll and Yrf. Thus, we may 
achieve a separation of the p_roblem of the unknown distribution func- 
tion by considering FBI1 and Y1l as additional scalar unknowns and 
their defining equations as additional scalar equations. 

given by Eq. ( 7). According to Eqs. (9)Snd ( 12), four scalar unknowns 
occur in this relation: T, +", TBTy, and YTf. To calculate them, we 
need four equations. These are Eq. ( 6 )  and 

In this way the unknown distribution function W1l( r ,Y) is explicitly 

$.Jll = J/lsrJyW1 ( r ,Y)  exp (rpB)dYdr 

N +' 
v1 

Y" = - srsy YW' ( r , Y )  exp (rpB)dYdr 

Relations ( 13) result from Eqs. (2 ) ,  ( 51, and ( 10)-applied to phase 
by replacing W"(r,Y) according to Eq. (7). Thus, the complicated 
problem of calculating the cloud-point curve and the shadow curve for 
a polydisperse copolymer solution is reduced to solving a system of 
- only four scalar  equations. For the numerical calculation, furthermore, 
r l 1  may be eliminated by means of Eqs. ( 6 )  and (8). 

If G /RT depends on W ( r , Y )  by means of scalars other than ?, we 
may proceed in an analogous manner. 

= E  

A N A L Y T I C  I N T E G R A B I L I T Y  

In the general case, the double integrals in Eqs. (13) have to be cal- 
culated numerically. But, i f  W'  ( r ,Y)  has an appropriate structure, the 
double integrals can be calculated analytically, an important simplifi- 
cation. 

For instance, analytic integrability is found for a (generalized) 
Stockmayer distribution [ 101 
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k r 

N 

4 2 T E  2 E  

1685 

The first  factor is a generalized Schulz-Flory distribution with re- 
spect to r ( ro  = 0, r o  = ..). The parameters are k and Y B t .  I' is the 
r function. The second factor is a Gaussian distribution with-respect 
to Y, with a standard deviation of m. The parameters are Y and E .  
The Gaussian function is assumed to be so narrow that its limits of 
definition, -m and *, may be replaced by 0 and 1, respectively, with a 
very small error.  Many industrial copolymers obey this requirement. 
For random copolymers we have E S 1/4. 

Applying Eq. (14), the double integrals in Eqs. (13) may be calcu- 
lated exactly, and we obtain from Eqs. (6)  and (13), after rearranging: 

, 
N 

+ 2rA[a + by'+ c ? ~ ~ ]  ( I&" - $") + rAE(b + 2cY') 

( 1  + ~ E C )  (+by' - 9') + tjb"[1 + ~ E C (  1 - @")I D
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1686 RATZSCH, KEHLEN, AND BROWARZIK 

Because a, b, c depend on T, Eqs, (15) and (16) permit the calcula- 
tion of T and +I1. Then, yBTT and Yrr are given directly by Eqs. (17) 
and (18). Furthermore, according to Eq. (7), W"( r,Y) also proves to 
be a generalized Stockmayer distributioz of type (14) with the same 
values of k and E and averages yBT1 and YT1, which a r e  to be calculated 
by Eqs. (17) and (18). 

C O E X I S T E N C E  C U R V E S  

To calculate the coexistence curves we consider a feed phase F 
splitting into the coexisting phases ' and IT. Thus, the mass balance 
[ 51 

(19) F F  + W ( r ,Y)  = (1 - @) + 'Wt  ( r ,Y) + $+lWWl'(r,Y) 

is to be combined with the phase equilibrium conditions. Here @ is 
the quotient of the total amount of segments in the phase 
feed phase. From Eq. (19) we obtain, according to (2 ) ,  (51, and ( l o ) ,  

F 

and in the 

+ = (1 - 0) +' + $ + I 1  

4 

Besides the feed, two of the three variables T, P, and @ are assumed 
to be specified. Starting with the phase equilibrium conditions (6 )  and 
( 7), the balances ( 19) and (20) may be applied to eliminate the quan- 
tities referring to one of the two coexisting phases (we choose phase '), 
which leads to 
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POLYDISPERSE COPOLYMER SOLUTIONS 1687 

(23)  

In complete analogy to the treatment of the cloud-point and shadow 
curves, a separation of the problem of the unknoyLn distribution func- 
tion W"( r,Y) is achieved by considering FBI' and Y1' as additional 
scalar  unknowns and their defining relations as additional scalar  equa- 
tions. Thus, W"( r ,Y)  is explicitly given - b j  Eq. (21). This relation 
contains four scalar  unknowns: + I 1 ,  rBtt, Ytt, and the unspecified of the 
three quantities T, P, and #. These unknowns may be calculated from 
the four scalar  equations (22)- ( 2  5). Then, the quantities referring to 
phase' may be easily obtained, e.g., from Eqs. ( 19) and (20). 

E X A M P L E  

A s  an example, we consider the cloud-point curve for the solution 
of a random copolymer, e.g., ethylene/vinyl acetate copolymer, which 
shall be characterized by the Stockmayer distribution ( 14), i.e. ,the 
relations (15)-( 18) apply. We choose rA = 1, TBt = 100, k = 1, Y' = 

0.5, and, according to the randomness, E = ?' (1 - Y' ). Furthermore, 
w e  assume a ,  b, and c, and, therefore, according to Eq. (111, also x, 
to be proportional to T-l .  Thus, the plot of x-l against +' corresponds 
to the cloud-point curve. 

To illustrate the influence of chemical polydispersity, in Fig. 1 the 
cloud-point curves are shown for three different sets of the param- 
eters a, b, and c. If we choose b = 0 and c = 0, the influence of chemi- 
cal polydispersity is eliminated, and we obtain the same curve as for a 
homopolymer. The case b = 0, c = a approximately describes many 
real copolymer solutions. Figure 1 shows that, for solutions of random 
copolymers, the influence of the chemical polydispersity on the liquid- 
liquid equilibrium is small. To give an idea of how large this influence 
may be in an unusual case, the cloud-point curve for b = -a, c = 0 is 
shown too. These parameter values correspond to an unusual case be- 
cause they imply the interactions of the a- and of the P-segments of 
the copolymer with the solvent molecules to be very different. 

N 
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X -' 

1.8 

1.7 

1.6 

1.5 

0 Critical point 

0 0.1 0.2 0.3 
Y'  

FIG. 1. Cloud-point curves for solutions of a random copolymer 
with different parameter sets. 
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A P P E N D I X :  D E R I V A T I O N  O F  E Q .  (11) 
FROM L A T T I C E  T H E O R Y  

1689 

In addition to the well-known assumptions of Barker 's  lattice 

(a) The combinatorial part of the Gibbs free energy is given by 
the Flory-Huggins relation. 

(b)  The contact pair numbers a re  calculated by the random mix- 
ture assumption. 

( c )  For each segment, all z contact points are available for inter- 
molecular interactions. 

theory [ll], we assume: 

Considering homopolymers, these assumptions result in the well- 
known Huggins X-parameter concept. For copolymers a modified 
Huggins theory is obtained that accounts for the chemical polydis- 
persity. 

Agres reads 
The residual part  of the change in the Gibbs free energy of mixing 

NAa*, NAB*, and N f fP 
solvent segments A and/or between copolymer segments ff and P. 
AuAa, AuAp, and Au 

* are contact pair numbers for contacts between 

are differences of interaction parameters of ffP 

* is the value of N * for the pure copolymer. Nffpl f fP 
According to Assumptions (a)-(c),  the contact pair numbers are 

given by 
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1690 RATZSCH, KEHLEN, AND BROWARZIK 

where N.. is the number of copolymer molecules characterized by 

the segment number r. and the segment fraction of ff-monomers Y.. 
1 J 

Applying a continuous description, we obtain 

11 

Au 
+ jrjy (1 - Y)W (r,Y)dYdr 

kT 

r,Y)dYdr Jrsy 1 - Y)W r,Y)dYdr] 

where k is Boltzmann' s constant. With Eq. ( 10) we get immediately 
Eq. (11) where 

In practice, the parameters a, b, and c a re  to be fitted to experimental 
data. 
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